一消化、吸收及转运脂类由于是非极性的,不能与水混溶,所以必须先使其形成一种能溶于水的乳糜微粒,才能通过小肠微绒毛将其吸收。上述过程可概括为:脂类水解→水解产物形成可溶的微粒→小肠粘膜摄取这些微粒→在小肠粘膜细胞中重新合成甘油三酯→甘油三酯进入血液循环。非反刍动物和反刍动物机体内部都有上述过程,但具体的机制却存在差异。
(一)非反刍动物的消化吸收
1.脂类在消化道前段的消化胃脂肪酶和幼小动物口腔的脂肪酶对正常饲粮脂类的消化作用甚小。猪胃脂肪酶仅对短、中链脂肪酸组成的脂类有一定消化作用。幼小动物在胰液和胆汁分泌机能尚未发育健全以前,口腔内的脂肪酶对奶脂具有较好的消化作用,但随年龄增加,此酶分泌减少。正常情况下,十二指肠逆流进胃中的胰脂酶有一定程度消化作用。饲粮脂类进入十二指肠后与大量胰液和胆汁混合,胆汁在激活胰脂酶和乳化脂类方面发挥着重要作用。在肠蠕动影响下,脂类乳化便于与胰脂酶在油—水交界面上充分接触。在胰脂酶作用下甘油三酯水解产生甘油一酯和游离脂肪酸。磷脂由磷脂酶水解成溶血性卵磷脂。胆固醇酯由胆固醇酯水解酶水解成胆固醇和脂肪酸。甘油一酯、脂肪酸和胆酸均具有极性和非极性基团,三者可聚合在一起形成水溶性的适于吸收的混合乳糜微粒(mixedmicellae)。混合微粒既有极性基团又有非极性基团,极性基团向外排列与水紧密接触,非极性基团向内。混合微粒的一个重要特性是其内部的非极性的脂质部分可携带大量的非极性化合物如固醇、脂溶性维生素、类胡萝卜素等,否则这些物质不能被吸收。
2.脂类在消化道后段的消化饲粮脂类在消化道后段的消化与瘤胃类似。不饱和脂肪酸在微生物产生的酶作用下可变成饱和脂肪酸,胆固醇变成胆酸。
(二)反刍动物的消化吸收瘤胃尚未发育成熟的反刍动物,脂类的消化与非反刍动物类同。
2.脂类在小肠的消化进入十二指肠的脂类由吸附在饲料颗粒表面的脂肪酸、微生物脂类以及少量瘤胃中未消化的饲料脂类构成。由于脂类中的甘油在瘤胃中被大量转化为挥发性脂肪酸,所以反刍动物十二指肠中缺乏甘油一酯,消化过程形成的混合微粒构成与非反刍动物不同。成年反刍动物小肠中混合微粒由溶血性卵磷脂、脂肪酸及胆酸构成。链长小于或等于14个碳原子的脂肪酸可不形成混合乳糜微粒而被直接吸收。混合乳糜微粒中的溶血性卵磷脂由来自胆汁和饲粮的磷脂在胰脂酶作用下形成,此外由于成年反刍动物小肠中不吸收甘油一酯,其粘膜细胞中甘油三酯通过磷酸甘油途径重新合成。由于反刍动物消化道对脂类的消化损失较小,加之微生物脂类的合成,所以进入十二指肠的脂肪酸总量可能大于摄入量。绵羊饲喂高精料饲粮,进入十二指肠的脂肪酸量是采食脂肪酸的104%。
3.脂类消化产物的吸收瘤胃中产生的短链脂肪酸主要通过瘤胃壁吸收。其余脂类的消化产物,进入回肠后都能被吸收。呈酸性环境的空肠前段主要吸收混合微粒中的长链脂肪酸,中后段空肠主要吸收混合微粒中的其它脂肪酸。溶血磷脂酰胆碱也在中、后段空肠被吸收,胰液分泌不足,磷脂酰胆碱可能在回肠积累。
(三)脂类的转运血中脂类主要以脂蛋白质的形式转运。根据密度、组成和电泳迁移速率将脂蛋白质分为四类:乳糜微粒、极低密度脂蛋白质(Very-low-density,缩写VLDL)、低密度脂蛋白质(Lowdensitylipoprotein,缩写LDL)和高密度脂蛋白质(Highdensitylipoprotein,缩写HDL)。乳糜微粒在小肠粘膜细胞中合成,VLDL、LDL、和HDL既可在小肠粘膜细胞合成,也可在肝脏合成。脂蛋白质中的蛋白质基团赋予脂类水溶性,使其能在血液中转运。中、短链脂肪酸可直接进入门静脉血液与清蛋白质结合转运。乳糜微粒和其它脂类经血液循环很快到达肝脏和其它组织,向狗注射14C标记的棕榈酸甘油酯,10分钟以内,其在血液中的浓度即减少一半。禽类淋巴系统发育不健全,所有脂类基本上都是经门脉血液转运。血中脂类转运到脂肪组织、肌肉、乳腺等毛细血管后,游离脂肪酸通过被动扩散进入细胞内,甘油三脂经毛细血管壁的酶分解成游离脂肪酸后再被吸收,未被吸收的物质经血液循环到达肝脏进行代谢。
二、脂类代谢及其效率(一)脂类代谢饲料脂类在体内代谢极为复杂,受遗传、动物种类和营养的影响,在饲粮脂类和能量供给充足情况下,体内脂肪组织和肌肉组织都以甘油三酯的合成代谢为主,饥饿条件下则以氧化分解代谢为主。
1.脂肪合成的部位猪和反刍动物脂肪合成主要在脂肪组织中进行,人主要在肝中进行脂肪合成,禽完全在肝中合成,过量则沉积于肝中,产生脂肪肝症。鼠、兔等的肝脏和脂肪组织中都可进行较为活跃的脂肪合成。脂肪细胞中脂肪代谢主要是为了贮存过多的能量和通过脂肪代谢循环向血浆提供游离脂肪酸,如图6-1所示。
3.脂肪的氧化供能肌肉细胞中脂肪是体内重要的脂肪代谢库,其代谢主要是氧化供能。细胞内营养素氧化代谢的总耗氧量,脂肪占60%。肌肉组织中沉积的脂肪可直接通过局部循环进入肌肉细胞进行氧化代谢,使脂肪表现出高的能量利用效率。饲粮和内源代谢供给的脂肪酸,肌细胞都能氧化利用。长链脂肪酸只在葡萄糖供能不足情况下才能发挥供能作用。进入肾脏的脂肪酸也主要用于氧化供能。心肌氧化β-羟基丁酸供能比氧化脂肪酸供能更有效。
(二)脂类的代谢效率1.脂肪沉积的效率一些饲料营养物质在体内形成脂肪沉积的利用效率列于表6-3。表6-3营养素转变成脂肪的效率
营养素(前体)脂肪(产物)效率%饲粮脂肪体脂肪70-95乙酸棕榈酸酯72葡萄糖三棕榈酸酯80蛋白质(鱼粉)体脂肪65
这些利用率均系理论值,用于实际生产一般偏高。因为实际生产中有很多因素影响利用率。产奶后期的奶牛,体内营养素的负平衡开始转为正平衡,体脂肪沉积开始恢复,饲料能量沉积体脂肪的利用率可达75%。而干奶期奶牛利用饲料能量沉积体脂肪的效率只有59%。饲粮结构对沉积体脂肪的影响更明显。凡引起发酵产热增加和体内代谢产热增加的因素都会降低能量利用效率。
2.脂肪氧化供能的效率体脂肪氧化供能的效率,按β-氧化途径计算,任何脂肪酸经此途径氧化都要耗用2molATP。每脱去一个二碳单位都可生成5molATP。每分子乙酰辅酶A彻底氧化可产生12molATP。以棕榈酸为例,照此计算可净生成129molATP((12+5)*(16/2-1)+12-2)。每分子ATP在生理条件下可提供能量33.5KJ,这样,棕榈酸氧化供能的效率大约是43%。同样可以估计出乙酸氧化供能的效率大约是38%,丙酸39%,丁酸41%,已酸42%,硬脂酸43%,甘油44%。